Photographer: Onbekend

dr. N. (Ning) Yan


  • Faculty of Science
    HIMS
  • Visiting address
    Science Park E
    Science Park 904  Room number: E.0.27
  • Postal address:
    Postbus  94720
    1090 GS  Amsterdam
  • N.Yan@uva.nl
    T: 0205256468

Profile

I joined UvA in 2014 after more than four years of research on solid oxide fuel cells at the University of Alberta in Canada.  As a tenure-track assistant professor at the Van ’t Hoff Institute for Molecular Sciences, I am working in the Sustainable Chemistry Research Priority Area program and focusing on the (electro)catalyst design and development for clean energy applications, including fuel cells, supercapacitors, CO2 valorizations. In particular, developing high-performance yet robust metallic nanomaterials, perovskite oxide and porous carbons are my main interests.  Recently, I was awarded the NWO-GDST Chemistry for Advanced Materials Grant (290 €k) to design cost-effective catalyst for the electroless plating of Cu in the printed circuit board.

Research Highlights

(1) N-doped carbons and composites

Electrochemical oxygen reduction and evolution reactions (ORR and OER) are central to the field of energy conversion and storage. The problem is that both processes are sluggish, requiring precious-metal catalysts. Using nitrilotriacetates as the precursor and different synthesis procedures, we developed N-doped carbons and composites as the alternative catalysts. One article was featured in the 2017 Emerging Investigator issue of Green Chem

 

(2) Double perovskite oxide

Double perovskite catalyst with a general formula of A2B2O5+δ demonstrated much higher oxygen ion diffusion rate and surface-exchange coefficient relative to the ABO3-type perovskite. We developed a series of double perovskite oxide as the multi-functional electrocatalysts.

  • We report a novel catalyst, NdBa0.75Ca0.25CoxFe2-xO5+δ that showed the “best of both worlds” effect, enabling excellent oxygen reduction activity in both low-temperature fuel cells (<100 °C) and solid oxide fuel cells (>600 °C). See Adv. Funct. Mater. 2016.
  • Besides, we also investigated the surface degradation of the double perovskite during the electrochemical reactions via advanced transmission electron microscope (Chem. Mater. 2017) and used it as the catalyst for oxygen reduction and water splitting reactions (Nano Energy 2017).

(3) Solid oxide fuel cells reactor

  • Solid oxide fuel cells (SOFCs) can offer more than use as a power generator. By incorporating a functional catalytic layer, we managed to realize the simultaneous in-situ CO2 conversion via the methane dry reforming, electricity generation and syngas production in SOFCs (Energy Environ. Sci. 2016).
  • We discovered the selective deposition of perovskite oxide on the oxide phase in the cermet (ceramic-metal) composite of the SOFC anode. This highly porous layer extended the triple-phase boundaries of the anode, suppressed the decomposition of oxide (e.g., doped barium cerates electrolyte)  and enhanced the activity for internal methane reforming (Adv. Mater. 2016).

Research Interests

  • Electrocatalysis for clean energy solutions, including oxygen reduction and water splitting reactions, fuel cells and supercapacitors.
  • Functionalized carbon materials via heteroatom doping, tuning porous structure and compositing with a secondary functional phase.
  • Perovskite oxide (electro)catalysis
  • Solid oxide fuel cells and membrane reactors

Self-motivated students who are interested in doing a bachelor or master project regarding (electro)catalysis are welcomed!

  • In the group, we have a standard rotating (ring-)disc electrode (RDE and RRDE) system and a number of homemade setups to evaluate the electrochemical performances of various materials for the key reactions in the emerging energy conversion and storage devices (e.g., to determine the proton conductivity, to evaluate the activity and to explore the reaction pathways.
  • We also have a high-temperature setup coupled with a fast gas chromatography. It enables us to perform studies on solid oxide fuel cells, membrane reactors for conversion and separation (e.g., O2 purification), and the conventional flow reactor for catalytic conversions (e.g., methane reforming, CO2 hydrogenation). 

In addition, we have various materials characterization equipment in-house, including XRD, SEM, NMR, GC-MS, FTIR, UV-Vis, temperature-programmed techniques (TPDRO),  gas/liquid adsorption equipment, mercury intrusion porosimetry and TGA-DSC.

Other critical analyses such as advanced TEM,  XPS and Ramam are also available at our collaborating institutions.  

2017

  • Yan, N., Zanna, S., Klein, L. H., Roushanafshar, M., Amirkhiz, B. S., Zeng, Y., ... Luo, J. L. (2017). The surface evolution of La0.4Sr0.6TiO3+δ anode in solid oxide fuel cells: Understanding the sulfur-promotion effect. Journal of Power Sources, 343, 127-134. DOI: 10.1016/j.jpowsour.2017.01.048 
  • Gao, Y., Jing, P., Yan, N., Hilbers, M., Zhang, H., Rothenberg, G., & Grecea, S. (2017). Dual-mode humidity detection using a lanthanide-based metal-organic framework: towards multifunctional humidity sensors. Chemical Communications, 43(32). DOI: 10.1039/C7CC01122A 
  • Pandey, J., Hua, B., Ng, W., Yang, Y., van der Veen, K., Chen, J., ... Yan, N. (2017). Developing Hierarchically Porous MnOx/NC Hybrid Nanorods for Oxygen Reduction and Evolution Catalysis. Green Chemistry, 19(12), 2793-2797. DOI: 10.1039/C7GC00147A 
  • Gnanakumar, E. S., Ng, W., Filiz, B. C., Rothenberg, G., Wang, S., Xu, H., ... Shiju, N. R. (in press). Plasma-assisted synthesis of monodispersed and robust Ru ultrafine-nanocatalysts for organosilane oxidation and oxygen evolution reactions. ChemCatChem. DOI: 10.1002/cctc.201700809 
  • Hua, B., Li, M., Sun, Y-F., Zhang, Y-Q., Yan, N., Chen, J., ... Luo, J. L. (2017). A coupling for success: controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts. Nano Energy, 32, 247-254. DOI: 10.1016/j.nanoen.2016.12.044 
  • Hua, B., Li, M., Sun, Y-F., Zhang, Y-Q., Yan, N., Li, J., ... Luo, J. L. (2017). Grafting doped manganite into nickel anode enables efficient and durable energy conversions in biogas solid oxide fuel cells. Applied Catalysis B-Environmental, 200, 174-181. DOI: 10.1016/j.apcatb.2016.07.001 
  • Hua, B., Sun, Y-F., Li, M., Yan, N., Chen, J., Zhang, Y-Q., ... Luo, J. L. (2017). Stabilizing double perovskite for effective bifunctional oxygen electrocatalysis in alkaline conditions. Chemistry of Materials. DOI: 10.1021/acs.chemmater.7b01114 

2016

  • Hua, B., Yan, N., Li, M., Sun, Y-F., Zhang, Y-Q., Li, J., ... Luo, J. L. (2016). Anode-Engineered Protonic Ceramic Fuel Cell with Excellent Performance and Fuel Compatibility. Advanced Materials, 28(40), 8922-8926. DOI: 10.1002/adma.201602103  [details] 
  • Eisenberg, D., Stroek, W., Geels, N. J., Sandu, C. S., Heller, A., Yan, N., & Rothenberg, G. (2016). A Simple Synthesis of an N-Doped Carbon ORR Catalyst: Hierarchical Micro/Meso/Macro Porosity and Graphitic Shells. Chemistry - A European Journal, 22(2), 501-505. DOI: 10.1002/chem.201504568  [details] 
  • Eisenberg, D., Stroek, W., Geels, N. J., Tanase, S., Ferbinteanu, M., Teat, S. J., ... Rothenberg, G. (2016). A Rational Synthesis of Hierarchically Porous, N-Doped Carbon from Mg-Based MOFs: Understanding the Link between Nitrogen Content and Oxygen Reduction Electrocatalysis. Physical Chemistry Chemical Physics, 18(30), 20778-20783. DOI: 10.1039/c6cp04132a  [details] 
  • Eisenberg, D., Prinsen, P., Geels, N. J., Stroek, W., Yan, N., Hua, B., ... Rothenberg, G. (2016). The evolution of hierarchical porosity in self-templated nitrogen-doped carbons and its effect on oxygen reduction electrocatalysis. RSC ADVANCES, 6(84), 80398-80407. DOI: 10.1039/c6ra16606g  [details] 
  • Yan, N., Pandey, J., Zeng, Y., Amirkhiz, B. S., Hua, B., Geels, N. J., ... Rothenberg, G. (2016). Developing a Thermal- and Coking-Resistant Cobalt-Tungsten Bimetallic Anode Catalyst for Solid Oxide Fuel Cells. ACS Catalysis, 6(7), 4630-4634. DOI: 10.1021/acscatal.6b01197  [details] 
  • Hua, B., Li, M., Sun, Y-F., Zhang, Y-Q., Yan, N., Chen, J., ... Luo, J. L. (2016). Biogas to syngas: flexible on-cell micro-reformer and NiSn bimetallic nanoparticle implanted solid oxide fuel cells for efficient energy conversion. Journal of Materials Chemistry. A, 4, 4603-4609. DOI: 10.1039/c6ta00532b  [details] 
  • Hua, B., Li, M., Zhang, Y-Q., Chen, J., Sun, Y-F., Yan, N., ... Luo, J. L. (2016). Facile Synthesis of Highly Active and Robust Ni-Mo Bimetallic Electrocatalyst for Hydrocarbon Oxidation in Solid Oxide Fuel Cells. ACS Energy Letters, 1(1), 225-230. DOI: 10.1021/acsenergylett.6b00109  [details] 
  • Hua, B., Zhang, Y-Q., Yan, N., Li, M., Sun, Y-F., Chen, J., ... Luo, J. L. (2016). The Excellence of Both Worlds: Developing Effective Double Perovskite Oxide Catalyst of Oxygen Reduction Reaction for Room and Elevated Temperature Applications. Advanced Functional Materials, 26(23), 4106-4112. DOI: 10.1002/adfm.201600339  [details] 
  • Hua, B., Yan, N., Li, M., Sun, Y-F., Chen, J., Zhang, Y-Q., ... Luo, J. L. (2016). Toward highly efficient in situ dry reforming of H2S contaminated methane in solid oxide fuel cells via incorporating a coke/sulfur resistant bimetallic catalyst layer. Journal of Materials Chemistry. A, 4(23), 9080-9087. DOI: 10.1039/c6ta02809h  [details] 
  • Hua, B., Yan, N., Li, M., Zhang, Y-Q., Sun, Y-F., Li, J., ... Luo, J. L. (2016). Novel layered solid oxide fuel cells with multiple-twinned Ni0.8Co0.2 nanoparticles: the key to thermally independent CO2 utilization and power-chemical cogeneration. Energy & Environmental Science, 9(1), 207-215. DOI: 10.1039/c5ee03017j  [details] 

2015

  • Gao, Y., Broersen, R., Hageman, W., Yan, N., Mittelmeijer-Hazeleger, M., Rothenberg, G., & Tanase, S. (2015). High proton conductivity in cyanide-bridged metal-organic frameworks: understanding the role of water. Journal of Materials Chemistry. A, 3, 22347-22352. DOI: 10.1039/c5ta05280g  [details] 
  • Yan, N., Zeng, Y., Shalchi, B., Wang, W., Gao, T., Rothenberg, G., & Luo, J. L. (2015). Discovery and Understanding of the Ambient-Condition Degradation of Doped Barium Cerate Proton-Conducting Perovskite Oxide in Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 162(14), F1408-F1414. DOI: 10.1149/2.0371514jes  [details] 
  • Afshar, M. R., Yan, N., Zahiri, B., Mitlin, D., Chuang, K. T., & Luo, J. L. (2015). Impregnation of La0.4Ce0.6O1.8-La0.4Sr0.6TiO3 as solid oxide fuel cell anode in H2S-containing fuels. Journal of Power Sources, 274, 211-218. DOI: 10.1016/j.jpowsour.2014.10.052  [details] 
  • Garcia, A., Yan, N., Vincent, A., Singh, A., Hill, J. M., Chuang, K. T., & Luo, J. L. (2015). Highly cost-effective and sulfur/coking resistant VOx-grafted TiO2 nanoparticles as an efficient anode catalyst for direct conversion of dry sour methane in solid oxide fuel cells. Journal of Materials Chemistry. A, 3(47), 23973-23980. DOI: 10.1039/c5ta06453h  [details] 
  • Roushanafshar, M., Yan, N., Chuang, K. T., & Luo, J. L. (2015). Electrochemical oxidation of sour natural gas over La0.4Ce0.6O1.8 - La0.4Sr0.6TiO3±d anode in SOFC: A mechanism study of H2S effects. Applied Catalysis B-Environmental, 176-177, 627-636. DOI: 10.1016/j.apcatb.2015.04.046  [details] 

Talk / presentation

  • Yan, Ning (invited speaker) (1-12-2016): The best of both worlds: developing perovskite oxide for fuel cells application, EMN Meeting on Perovskite and Devices, Xiamen, China.
This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library  or the Pure staff  of your faculty / institute. Log in to Pure  to edit your publications.
  • No ancillary activities

edit contact information edit tabs