 Knaus, T., Macheroux, P., & Mutti, F. G. (2024). Fus-SMO: Kinetics, Biochemical Characterisation and In Silico Modelling of a Chimeric Styrene Monooxygenase Demonstrating Quantitative Coupling Efficiency. ChemBioChem, 25(7), Article e202300833. https://doi.org/10.1002/cbic.202300833 [details]
Knaus, T., Macheroux, P., & Mutti, F. G. (2024). Fus-SMO: Kinetics, Biochemical Characterisation and In Silico Modelling of a Chimeric Styrene Monooxygenase Demonstrating Quantitative Coupling Efficiency. ChemBioChem, 25(7), Article e202300833. https://doi.org/10.1002/cbic.202300833 [details] Liu, Y., Knaus, T., Wei, Z., Zhang, J., Damian, M., Ronneberger, S., Zhu, X., Seeberger, P. H., Zhang, H., Mutti, F. G., & Loeffler, F. F. (2024). Confined Flash Printing and Synthesis of Stable Perovskite Nanofilms under Ambient Conditions. Advanced materials, 36(46), Article 2409592. https://doi.org/10.1002/adma.202409592 [details]
Liu, Y., Knaus, T., Wei, Z., Zhang, J., Damian, M., Ronneberger, S., Zhu, X., Seeberger, P. H., Zhang, H., Mutti, F. G., & Loeffler, F. F. (2024). Confined Flash Printing and Synthesis of Stable Perovskite Nanofilms under Ambient Conditions. Advanced materials, 36(46), Article 2409592. https://doi.org/10.1002/adma.202409592 [details] Liu, Y., Wei, Z., Mutti, F. F., Zhang, H., & Loeffler, F. F. (2024). Redox-responsive inorganic fluorescent nanoprobes for serodiagnosis and bioimaging. Coordination chemistry reviews, 509, Article 215817. https://doi.org/10.1016/j.ccr.2024.215817 [details]
Liu, Y., Wei, Z., Mutti, F. F., Zhang, H., & Loeffler, F. F. (2024). Redox-responsive inorganic fluorescent nanoprobes for serodiagnosis and bioimaging. Coordination chemistry reviews, 509, Article 215817. https://doi.org/10.1016/j.ccr.2024.215817 [details] Liu, Y., Wei, Z., Zhang, J., Xu, Y., Zhou, J., Ma, Z., Mutti, F. G., Zhang, H., Zhu, X., & Loeffler, F. F. (2024). Customized Enhancement of Thermal Sensitivity of Tumors at Different Subcutaneous Depths by Multichannel Lanthanide Nanocomposites. Advanced materials, 36(23), Article 2402981. https://doi.org/10.1002/adma.202402981 [details]
Liu, Y., Wei, Z., Zhang, J., Xu, Y., Zhou, J., Ma, Z., Mutti, F. G., Zhang, H., Zhu, X., & Loeffler, F. F. (2024). Customized Enhancement of Thermal Sensitivity of Tumors at Different Subcutaneous Depths by Multichannel Lanthanide Nanocomposites. Advanced materials, 36(23), Article 2402981. https://doi.org/10.1002/adma.202402981 [details] Maier, A., Knaus, T., Mutti, F. G., & Tischler, D. (2024). Unlocking Catalytic Diversity of a Formate Dehydrogenase: Formamide Activity for NADPH Regeneration and Amine Supply for Asymmetric Reductive Amination. ACS Catalysis, 14(4), 2207-2215. https://doi.org/10.1021/acscatal.3c05409 [details]
Maier, A., Knaus, T., Mutti, F. G., & Tischler, D. (2024). Unlocking Catalytic Diversity of a Formate Dehydrogenase: Formamide Activity for NADPH Regeneration and Amine Supply for Asymmetric Reductive Amination. ACS Catalysis, 14(4), 2207-2215. https://doi.org/10.1021/acscatal.3c05409 [details] Mendoza-Avila, J., Döring, V., Bouzon, M., Dubois, I., Knaus, T., Mouterde, L. M. M., Zaparucha, A., Mutti, F. G., & Vergne-Vaxelaire, C. (2024). Amine-Tolerant E. coli Strains Generated via Adaptive Evolution for Sustainable Synthesis of Chiral Amines. ACS Sustainable Chemistry & Engineering, 12(39), 14435-14445. https://doi.org/10.1021/acssuschemeng.4c04356 [details]
Mendoza-Avila, J., Döring, V., Bouzon, M., Dubois, I., Knaus, T., Mouterde, L. M. M., Zaparucha, A., Mutti, F. G., & Vergne-Vaxelaire, C. (2024). Amine-Tolerant E. coli Strains Generated via Adaptive Evolution for Sustainable Synthesis of Chiral Amines. ACS Sustainable Chemistry & Engineering, 12(39), 14435-14445. https://doi.org/10.1021/acssuschemeng.4c04356 [details] Reus, B., Damian, M., & Mutti, F. G. (2024). Advances in cofactor immobilization for enhanced continuous-flow biocatalysis. Journal of Flow Chemistry, 14(1), 219-238. https://doi.org/10.1007/s41981-024-00315-2 [details]
Reus, B., Damian, M., & Mutti, F. G. (2024). Advances in cofactor immobilization for enhanced continuous-flow biocatalysis. Journal of Flow Chemistry, 14(1), 219-238. https://doi.org/10.1007/s41981-024-00315-2 [details] Tseliou, V., Masman, M. F., Knaus, T., & Mutti, F. G. (2024). Current Status of Amine Dehydrogenases: From Active Site Architecture to Diverse Applications Across a Broad Substrate Spectrum. ChemCatChem, 16(24), Article e202400469. https://doi.org/10.1002/cctc.202400469 [details]
Tseliou, V., Masman, M. F., Knaus, T., & Mutti, F. G. (2024). Current Status of Amine Dehydrogenases: From Active Site Architecture to Diverse Applications Across a Broad Substrate Spectrum. ChemCatChem, 16(24), Article e202400469. https://doi.org/10.1002/cctc.202400469 [details] Wei, Z., Knaus, T., Damian, M., Liu, Y., Santana, C. S., Yan, N., Rothenberg, G., & Mutti, F. G. (2024). Bio-electrocatalytic Alkene Reduction Using Ene-Reductases with Methyl Viologen as Electron Mediator. ChemBioChem, 25(21), Article e202400458. https://doi.org/10.1002/cbic.202400458 [details]
Wei, Z., Knaus, T., Damian, M., Liu, Y., Santana, C. S., Yan, N., Rothenberg, G., & Mutti, F. G. (2024). Bio-electrocatalytic Alkene Reduction Using Ene-Reductases with Methyl Viologen as Electron Mediator. ChemBioChem, 25(21), Article e202400458. https://doi.org/10.1002/cbic.202400458 [details] Zhai, Z., Mavridou, D., Damian, M., Mutti, F. G., Schoenmakers, P. J., & Gargano, A. F. G. (2024). Characterization of Complex Proteoform Mixtures by Online Nanoflow Ion-Exchange Chromatography-Native Mass Spectrometry. Analytical Chemistry, 96(22), 8880-8885. https://doi.org/10.1021/acs.analchem.4c01760 [details]
Zhai, Z., Mavridou, D., Damian, M., Mutti, F. G., Schoenmakers, P. J., & Gargano, A. F. G. (2024). Characterization of Complex Proteoform Mixtures by Online Nanoflow Ion-Exchange Chromatography-Native Mass Spectrometry. Analytical Chemistry, 96(22), 8880-8885. https://doi.org/10.1021/acs.analchem.4c01760 [details] Belov, F., Mildner, A., Knaus, T., Mutti, F. G., & von Langermann, J. (2023). Crystallization-based downstream processing of ω-transaminase- and amine dehydrogenase-catalyzed reactions. Reaction Chemistry and Engineering, 8(6), 1427-1439. https://doi.org/10.1039/d2re00496h [details]
Belov, F., Mildner, A., Knaus, T., Mutti, F. G., & von Langermann, J. (2023). Crystallization-based downstream processing of ω-transaminase- and amine dehydrogenase-catalyzed reactions. Reaction Chemistry and Engineering, 8(6), 1427-1439. https://doi.org/10.1039/d2re00496h [details] Damian, M., & Mutti, F. G. (2023). Two anti-Prelog NAD-Dependent Alcohol Dehydrogenases with Broad Substrate Scope and Excellent Enantioselectivity. European Journal of Organic Chemistry, 26(47), Article e202300734. https://doi.org/10.1002/ejoc.202300734 [details]
Damian, M., & Mutti, F. G. (2023). Two anti-Prelog NAD-Dependent Alcohol Dehydrogenases with Broad Substrate Scope and Excellent Enantioselectivity. European Journal of Organic Chemistry, 26(47), Article e202300734. https://doi.org/10.1002/ejoc.202300734 [details] Liu, Y., Wei, Z., Damian, M., Zhu, X., Knaus, T., Zhang, H., Mutti, F. G., & Loeffler, F. F. (2023). Recyclable and Robust Optical Nanoprobes with Engineered Enzymes for Sustainable Serodiagnostics. Advanced materials, 35(47), Article 2306615. https://doi.org/10.1002/adma.202306615 [details]
Liu, Y., Wei, Z., Damian, M., Zhu, X., Knaus, T., Zhang, H., Mutti, F. G., & Loeffler, F. F. (2023). Recyclable and Robust Optical Nanoprobes with Engineered Enzymes for Sustainable Serodiagnostics. Advanced materials, 35(47), Article 2306615. https://doi.org/10.1002/adma.202306615 [details] Liu, Y., Zhu, X., Wei, Z., Wu, K., Zhang, J., Mutti, F. G., Zhang, H., Loeffler, F. F., & Zhou, J. (2023). Multi-Channel Lanthanide Nanocomposites for Customized Synergistic Treatment of Orthotopic Multi-Tumor Cases. Angewandte Chemie - International Edition, 62(30), Article e202303570. https://doi.org/10.1002/anie.202303570, https://doi.org/10.1002/ange.202303570 [details]
Liu, Y., Zhu, X., Wei, Z., Wu, K., Zhang, J., Mutti, F. G., Zhang, H., Loeffler, F. F., & Zhou, J. (2023). Multi-Channel Lanthanide Nanocomposites for Customized Synergistic Treatment of Orthotopic Multi-Tumor Cases. Angewandte Chemie - International Edition, 62(30), Article e202303570. https://doi.org/10.1002/anie.202303570, https://doi.org/10.1002/ange.202303570 [details] Liu, Y., Zhu, X., Wei, Z., Wu, K., Zhang, J., Mutti, F. G., Zhang, H., Loeffler, F. F., & Zhou, J. (2023). Multi-Channel Lanthanide Nanocomposites for Customized Synergistic Treatment of Orthotopic Multi-Tumor Cases. Angewandte Chemie, 135(30), Article e202303570. https://doi.org/10.1002/ange.202303570, https://doi.org/10.1002/anie.202303570 [details]
Liu, Y., Zhu, X., Wei, Z., Wu, K., Zhang, J., Mutti, F. G., Zhang, H., Loeffler, F. F., & Zhou, J. (2023). Multi-Channel Lanthanide Nanocomposites for Customized Synergistic Treatment of Orthotopic Multi-Tumor Cases. Angewandte Chemie, 135(30), Article e202303570. https://doi.org/10.1002/ange.202303570, https://doi.org/10.1002/anie.202303570 [details] Tomarelli, E., Cerra, B., Mutti, F. G., & Gioiello, A. (2023). Merging Continuous Flow Technology, Photochemistry and Biocatalysis to Streamline Steroid Synthesis. Advanced Synthesis and Catalysis, 365(23), 4024-4048. https://doi.org/10.1002/adsc.202300305 [details]
Tomarelli, E., Cerra, B., Mutti, F. G., & Gioiello, A. (2023). Merging Continuous Flow Technology, Photochemistry and Biocatalysis to Streamline Steroid Synthesis. Advanced Synthesis and Catalysis, 365(23), 4024-4048. https://doi.org/10.1002/adsc.202300305 [details] Wei, Z., Knaus, T., Liu, Y., Zhai, Z., Gargano, A. F. G., Rothenberg, G., Yan, N., & Mutti, F. G. (2023). A high-performance electrochemical biosensor using an engineered urate oxidase. Chemical Communications, 59(52), 8071-8074 . https://doi.org/10.1039/d3cc01869e [details]
Wei, Z., Knaus, T., Liu, Y., Zhai, Z., Gargano, A. F. G., Rothenberg, G., Yan, N., & Mutti, F. G. (2023). A high-performance electrochemical biosensor using an engineered urate oxidase. Chemical Communications, 59(52), 8071-8074 . https://doi.org/10.1039/d3cc01869e [details] Bhardwaj, S. K., Knaus, T., Garcia, A., Yan, N., & Mutti, F. G. (2022). Bacterial Peroxidase on Electrochemically Reduced Graphene Oxide for Highly Sensitive H2O2 Detection. ChemBioChem, 23(17), Article e202200346. https://doi.org/10.1002/cbic.202200346 [details]
Bhardwaj, S. K., Knaus, T., Garcia, A., Yan, N., & Mutti, F. G. (2022). Bacterial Peroxidase on Electrochemically Reduced Graphene Oxide for Highly Sensitive H2O2 Detection. ChemBioChem, 23(17), Article e202200346. https://doi.org/10.1002/cbic.202200346 [details] Corrado, M. L., Knaus, T., Schwaneberg, U., & Mutti, F. G. (2022). High-Yield Synthesis of Enantiopure 1,2-Amino Alcohols from L-Phenylalanine via Linear and Divergent Enzymatic Cascades. Organic Process Research and Development, 26(7), 2085-2095. https://doi.org/10.1021/acs.oprd.1c00490 [details]
Corrado, M. L., Knaus, T., Schwaneberg, U., & Mutti, F. G. (2022). High-Yield Synthesis of Enantiopure 1,2-Amino Alcohols from L-Phenylalanine via Linear and Divergent Enzymatic Cascades. Organic Process Research and Development, 26(7), 2085-2095. https://doi.org/10.1021/acs.oprd.1c00490 [details] Croci, F., Vilím, J., Adamopoulou, T., Tseliou, V., Schoenmakers, P. J., Knaus, T., & Mutti, F. G. (2022). Continuous Flow Biocatalytic Reductive Amination by Co-Entrapping Dehydrogenases with Agarose Gel in a 3D-Printed Mould Reactor. ChemBioChem, 23(22), Article e202200549. https://doi.org/10.1002/cbic.202200549 [details]
Croci, F., Vilím, J., Adamopoulou, T., Tseliou, V., Schoenmakers, P. J., Knaus, T., & Mutti, F. G. (2022). Continuous Flow Biocatalytic Reductive Amination by Co-Entrapping Dehydrogenases with Agarose Gel in a 3D-Printed Mould Reactor. ChemBioChem, 23(22), Article e202200549. https://doi.org/10.1002/cbic.202200549 [details] Knaus, T., Corrado, M. L., & Mutti, F. G. (2022). One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate. ACS Catalysis, 12(23), 14459-14475. https://doi.org/10.1021/acscatal.2c03052 [details]
Knaus, T., Corrado, M. L., & Mutti, F. G. (2022). One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate. ACS Catalysis, 12(23), 14459-14475. https://doi.org/10.1021/acscatal.2c03052 [details] Corrado, M. L., Knaus, T., & Mutti, F. G. (2021). High Regio- and Stereoselective Multi-enzymatic Synthesis of All Phenylpropanolamine Stereoisomers from β-Methylstyrene. ChemBioChem, 22(13), 2345-2350. https://doi.org/10.1002/cbic.202100123 [details]
Corrado, M. L., Knaus, T., & Mutti, F. G. (2021). High Regio- and Stereoselective Multi-enzymatic Synthesis of All Phenylpropanolamine Stereoisomers from β-Methylstyrene. ChemBioChem, 22(13), 2345-2350. https://doi.org/10.1002/cbic.202100123 [details] Corrado, M. L., Tseliou, V., Houwman, J. A., Böhmer, W., Vilím, J., Masman, M. F., Knaus, T., & Mutti, F. G. (2021). Hydrogen-borrowing conversion of alcohols into optically active primary amines by combination of alcohol dehydrogenases and amine dehydrogenases. In J. Whittall, & P. W. Sutton (Eds.), Applied Biocatalysis: The Chemist’s Enzyme Toolbox (pp. 455-468). Wiley. https://doi.org/10.1002/9781119487043.ch11 [details]
Corrado, M. L., Tseliou, V., Houwman, J. A., Böhmer, W., Vilím, J., Masman, M. F., Knaus, T., & Mutti, F. G. (2021). Hydrogen-borrowing conversion of alcohols into optically active primary amines by combination of alcohol dehydrogenases and amine dehydrogenases. In J. Whittall, & P. W. Sutton (Eds.), Applied Biocatalysis: The Chemist’s Enzyme Toolbox (pp. 455-468). Wiley. https://doi.org/10.1002/9781119487043.ch11 [details] Tseliou, V., Böhmer, W., Corrado, M. L., Masman, M. F., Knaus, T., & Mutti, F. G. (2021). Asymmetric reductive amination of ketones catalysed by amine dehydrogenases. In J. Whittall, & P. W. Sutton (Eds.), Applied Biocatalysis: The Chemist’s Enzyme Toolbox (pp. 221-231). Wiley. https://doi.org/10.1002/9781119487043.ch5 [details]
Tseliou, V., Böhmer, W., Corrado, M. L., Masman, M. F., Knaus, T., & Mutti, F. G. (2021). Asymmetric reductive amination of ketones catalysed by amine dehydrogenases. In J. Whittall, & P. W. Sutton (Eds.), Applied Biocatalysis: The Chemist’s Enzyme Toolbox (pp. 221-231). Wiley. https://doi.org/10.1002/9781119487043.ch5 [details] Tseliou, V., Schilder, D., Masman, M. F., Knaus, T., & Mutti, F. G. (2021). Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity. Chemistry-A European Journal, 27(10), 3315-3325. https://doi.org/10.1002/chem.202003140 [details]
Tseliou, V., Schilder, D., Masman, M. F., Knaus, T., & Mutti, F. G. (2021). Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity. Chemistry-A European Journal, 27(10), 3315-3325. https://doi.org/10.1002/chem.202003140 [details] Vilím, J., Knaus, T., & Mutti, F. G. (2021). Aerobic synthesis of aromatic nitriles from alcohols and ammonia using galactose oxidase. In J. Whittall, & P. W. Sutton (Eds.), Applied Biocatalysis: The Chemist’s Enzyme Toolbox (pp. 449-455). Wiley. https://doi.org/10.1002/9781119487043.ch11 [details]
Vilím, J., Knaus, T., & Mutti, F. G. (2021). Aerobic synthesis of aromatic nitriles from alcohols and ammonia using galactose oxidase. In J. Whittall, & P. W. Sutton (Eds.), Applied Biocatalysis: The Chemist’s Enzyme Toolbox (pp. 449-455). Wiley. https://doi.org/10.1002/9781119487043.ch11 [details] Böhmer, W., Koenekoop, L., Simon, T., & Mutti, F. G. (2020). Parallel Interconnected Kinetic Asymmetric Transformation (PIKAT) with an Immobilized ω-Transaminase in Neat Organic Solvent. Molecules, 25(9), Article 2140. https://doi.org/10.3390/molecules25092140 [details]
Böhmer, W., Koenekoop, L., Simon, T., & Mutti, F. G. (2020). Parallel Interconnected Kinetic Asymmetric Transformation (PIKAT) with an Immobilized ω-Transaminase in Neat Organic Solvent. Molecules, 25(9), Article 2140. https://doi.org/10.3390/molecules25092140 [details] Böhmer, W., Volkov, A., Engelmark Cassimjee, K., & Mutti, F. G. (2020). Continuous Flow Bioamination of Ketones in Organic Solvents at Controlled Water Activity using Immobilized ω-Transaminases. Advanced Synthesis & Catalysis, 362(9), 1858-1867. https://doi.org/10.1002/adsc.201901274 [details]
Böhmer, W., Volkov, A., Engelmark Cassimjee, K., & Mutti, F. G. (2020). Continuous Flow Bioamination of Ketones in Organic Solvents at Controlled Water Activity using Immobilized ω-Transaminases. Advanced Synthesis & Catalysis, 362(9), 1858-1867. https://doi.org/10.1002/adsc.201901274 [details] Tseliou, V., Knaus, T., Vilím, J., Masman, M. F., & Mutti, F. G. (2020). Kinetic Resolution of Racemic Primary Amines Using Geobacillus stearothermophilus Amine Dehydrogenase Variant. ChemCatChem, 12(8), 2184-2188. https://doi.org/10.1002/cctc.201902085 [details]
Tseliou, V., Knaus, T., Vilím, J., Masman, M. F., & Mutti, F. G. (2020). Kinetic Resolution of Racemic Primary Amines Using Geobacillus stearothermophilus Amine Dehydrogenase Variant. ChemCatChem, 12(8), 2184-2188. https://doi.org/10.1002/cctc.201902085 [details] Bohmer, W., Knaus, T., Volkov, A., Slot, T. K., Shiju, N. R., Cassimjee, K. E., & Mutti, F. G. (2019). Highly efficient production of chiral amines in batch and continuous flow by immobilized ω-transaminases on controlled porosity glass metal-ion affinity carrier. Journal of Biotechnology, 291, 52-60. https://doi.org/10.1016/j.jbiotec.2018.12.001 [details]
Bohmer, W., Knaus, T., Volkov, A., Slot, T. K., Shiju, N. R., Cassimjee, K. E., & Mutti, F. G. (2019). Highly efficient production of chiral amines in batch and continuous flow by immobilized ω-transaminases on controlled porosity glass metal-ion affinity carrier. Journal of Biotechnology, 291, 52-60. https://doi.org/10.1016/j.jbiotec.2018.12.001 [details] Cariati, L., Oliverio, M., Mutti, F. G., Bonacci, S., Knaus, T., Costanzo, P., & Procopio, A. (2019). Hydrolases-mediated transformation of oleuropein into demethyloleuropein. Bioorganic Chemistry, 84, 384-388. https://doi.org/10.1016/j.bioorg.2018.12.005 [details]
Cariati, L., Oliverio, M., Mutti, F. G., Bonacci, S., Knaus, T., Costanzo, P., & Procopio, A. (2019). Hydrolases-mediated transformation of oleuropein into demethyloleuropein. Bioorganic Chemistry, 84, 384-388. https://doi.org/10.1016/j.bioorg.2018.12.005 [details] Corrado, M. L., Knaus, T., & Mutti, F. G. (2019). Regio- and stereoselective multi-enzymatic aminohydroxylation of β-methylstyrene using dioxygen, ammonia and formate. Green Chemistry, 21(23), 6246-6251. https://doi.org/10.1039/c9gc03161h [details]
Corrado, M. L., Knaus, T., & Mutti, F. G. (2019). Regio- and stereoselective multi-enzymatic aminohydroxylation of β-methylstyrene using dioxygen, ammonia and formate. Green Chemistry, 21(23), 6246-6251. https://doi.org/10.1039/c9gc03161h [details] Gacs, J., Zhang, W., Knaus, T., Mutti, F. G., Arends, I. W. C. E., & Hollmann, F. (2019). A Photo-Enzymatic Cascade to Transform Racemic Alcohols into Enantiomerically Pure Amines. Catalysts, 9(4), Article 305. https://doi.org/10.3390/catal9040305 [details]
Gacs, J., Zhang, W., Knaus, T., Mutti, F. G., Arends, I. W. C. E., & Hollmann, F. (2019). A Photo-Enzymatic Cascade to Transform Racemic Alcohols into Enantiomerically Pure Amines. Catalysts, 9(4), Article 305. https://doi.org/10.3390/catal9040305 [details] Houwman, J. A., Knaus, T., Costa, M., & Mutti, F. G. (2019). Efficient synthesis of enantiopure amines from alcohols using resting E. coli cells and ammonia. Green Chemistry, 21(14), 3846-3857. https://doi.org/10.1039/c9gc01059a [details]
Houwman, J. A., Knaus, T., Costa, M., & Mutti, F. G. (2019). Efficient synthesis of enantiopure amines from alcohols using resting E. coli cells and ammonia. Green Chemistry, 21(14), 3846-3857. https://doi.org/10.1039/c9gc01059a [details] Musa, M. M., Hollmann, F., & Mutti, F. G. (2019). Synthesis of enantiomerically pure alcohols and amines via biocatalytic deracemisation methods. Catalysis Science & Technology, 9(20), 5487-5503. https://doi.org/10.1039/c9cy01539f [details]
Musa, M. M., Hollmann, F., & Mutti, F. G. (2019). Synthesis of enantiomerically pure alcohols and amines via biocatalytic deracemisation methods. Catalysis Science & Technology, 9(20), 5487-5503. https://doi.org/10.1039/c9cy01539f [details] Tseliou, V., Knaus, T., Masman, M. F., Corrado, M. L., & Mutti, F. G. (2019). Generation of amine dehydrogenases with increased catalytic performance and substrate scope from ε-deaminating L-Lysine dehydrogenase. Nature Communications, 10, Article 3717. https://doi.org/10.1038/s41467-019-11509-x [details]
Tseliou, V., Knaus, T., Masman, M. F., Corrado, M. L., & Mutti, F. G. (2019). Generation of amine dehydrogenases with increased catalytic performance and substrate scope from ε-deaminating L-Lysine dehydrogenase. Nature Communications, 10, Article 3717. https://doi.org/10.1038/s41467-019-11509-x [details] Tseliou, V., Masman, M. F., Böhmer, W., Knaus, T., & Mutti, F. G. (2019). Mechanistic Insight into the Catalytic Promiscuity of Amine Dehydrogenases: Asymmetric Synthesis of Secondary and Primary Amines. ChemBioChem, 20(6), 800-812. https://doi.org/10.1002/cbic.201800626 [details]
Tseliou, V., Masman, M. F., Böhmer, W., Knaus, T., & Mutti, F. G. (2019). Mechanistic Insight into the Catalytic Promiscuity of Amine Dehydrogenases: Asymmetric Synthesis of Secondary and Primary Amines. ChemBioChem, 20(6), 800-812. https://doi.org/10.1002/cbic.201800626 [details] Bohmer, W., Knaus, T., & Mutti, F. G. (2018). Hydrogen-Borrowing Alcohol Bioamination with Coimmobilized Dehydrogenases. ChemCatChem, 10(4), 731-735. https://doi.org/10.1002/cctc.201701366 [details]
Bohmer, W., Knaus, T., & Mutti, F. G. (2018). Hydrogen-Borrowing Alcohol Bioamination with Coimmobilized Dehydrogenases. ChemCatChem, 10(4), 731-735. https://doi.org/10.1002/cctc.201701366 [details] Corrado, M. L., Knaus, T., & Mutti, F. G. (2018). A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation. ChemBioChem, 19(7), 679-686. https://doi.org/10.1002/cbic.201700653 [details]
Corrado, M. L., Knaus, T., & Mutti, F. G. (2018). A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation. ChemBioChem, 19(7), 679-686. https://doi.org/10.1002/cbic.201700653 [details] Knaus, T., Tseliou, V., Humphreys, L. D., Scrutton, N. S., & Mutti, F. G. (2018). A biocatalytic method for the chemoselective aerobic oxidation of aldehydes to carboxylic acids. Green Chemistry, 20(17), 3931-3943. https://doi.org/10.1039/c8gc01381k [details]
Knaus, T., Tseliou, V., Humphreys, L. D., Scrutton, N. S., & Mutti, F. G. (2018). A biocatalytic method for the chemoselective aerobic oxidation of aldehydes to carboxylic acids. Green Chemistry, 20(17), 3931-3943. https://doi.org/10.1039/c8gc01381k [details] Vilím, J., Knaus, T., & Mutti, F. G. (2018). Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Angewandte Chemie, International Edition, 57(43), 14240-14244. https://doi.org/10.1002/anie.201809411, https://doi.org/10.1002/ange.201809411 [details]
Vilím, J., Knaus, T., & Mutti, F. G. (2018). Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Angewandte Chemie, International Edition, 57(43), 14240-14244. https://doi.org/10.1002/anie.201809411, https://doi.org/10.1002/ange.201809411 [details] Vilím, J., Knaus, T., & Mutti, F. G. (2018). Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Angewandte Chemie, 130(43), 14436-14440. https://doi.org/10.1002/ange.201809411, https://doi.org/10.1002/anie.201809411 [details]
Vilím, J., Knaus, T., & Mutti, F. G. (2018). Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Angewandte Chemie, 130(43), 14436-14440. https://doi.org/10.1002/ange.201809411, https://doi.org/10.1002/anie.201809411 [details] Zhang, W., Fernandez-Fueyo, E., Ni, Y., van Schie, M., Gacs, J., Renirie, R., Wever, R., Mutti, F. G., Rother, D., Alcalde, M., & Hollmann, F. (2018). Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nature Catalysis, 1(1), 55-62. https://doi.org/10.1038/s41929-017-0001-5 [details]
Zhang, W., Fernandez-Fueyo, E., Ni, Y., van Schie, M., Gacs, J., Renirie, R., Wever, R., Mutti, F. G., Rother, D., Alcalde, M., & Hollmann, F. (2018). Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nature Catalysis, 1(1), 55-62. https://doi.org/10.1038/s41929-017-0001-5 [details] Knaus, T., & Mutti, F. G. (2017). Biocatalytic hydrogen-borrowing cascades. Chimica Oggi, 35(5, monographic special issue), 34-37. https://www.teknoscienze.com/tks_article/biocatalytic-hydrogen-borrowing-cascades/ [details]
Knaus, T., & Mutti, F. G. (2017). Biocatalytic hydrogen-borrowing cascades. Chimica Oggi, 35(5, monographic special issue), 34-37. https://www.teknoscienze.com/tks_article/biocatalytic-hydrogen-borrowing-cascades/ [details] Knaus, T., Böhmer, W., & Mutti, F. G. (2017). Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds. Green Chemistry, 19(2), 453-463. https://doi.org/10.1039/c6gc01987k [details]
Knaus, T., Böhmer, W., & Mutti, F. G. (2017). Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds. Green Chemistry, 19(2), 453-463. https://doi.org/10.1039/c6gc01987k [details] Both, P., Busch, H., Kelly, P. P., Mutti, F. G., Turner, N. J., & Flitsch, S. L. (2016). Ganzzellen‐Biokatalysator für stereoselektive C‐H‐Aminierungen. Angewandte Chemie, 128(4), 1533-1536. https://doi.org/10.1002/ange.201510028, https://doi.org/10.1002/anie.201510028 [details]
Both, P., Busch, H., Kelly, P. P., Mutti, F. G., Turner, N. J., & Flitsch, S. L. (2016). Ganzzellen‐Biokatalysator für stereoselektive C‐H‐Aminierungen. Angewandte Chemie, 128(4), 1533-1536. https://doi.org/10.1002/ange.201510028, https://doi.org/10.1002/anie.201510028 [details] Both, P., Busch, H., Kelly, P. P., Mutti, F. G., Turner, N. J., & Flitsch, S. L. (2016). Whole-cell biocatalysts for stereoselective C-H amination reactions. Angewandte Chemie, International Edition, 55(4), 1511-1513. https://doi.org/10.1002/anie.201510028, https://doi.org/10.1002/ange.201510028 [details]
Both, P., Busch, H., Kelly, P. P., Mutti, F. G., Turner, N. J., & Flitsch, S. L. (2016). Whole-cell biocatalysts for stereoselective C-H amination reactions. Angewandte Chemie, International Edition, 55(4), 1511-1513. https://doi.org/10.1002/anie.201510028, https://doi.org/10.1002/ange.201510028 [details] Knaus, T., Paul, C. E., Levy, C. W., de Vries, S., Mutti, F. G., Hollmann, F., & Scrutton, N. S. (2016). Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes. Journal of the American Chemical Society, 138(3), 1033-1039. https://doi.org/10.1021/jacs.5b12252 [details]
Knaus, T., Paul, C. E., Levy, C. W., de Vries, S., Mutti, F. G., Hollmann, F., & Scrutton, N. S. (2016). Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes. Journal of the American Chemical Society, 138(3), 1033-1039. https://doi.org/10.1021/jacs.5b12252 [details] Mutti, F. G., Knaus, T., Scrutton, N. S., Breuer, M., & Turner, N. J. (2015). Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science, 349(6255), 1525-1529. https://doi.org/10.1126/science.aac9283 [details]
Mutti, F. G., Knaus, T., Scrutton, N. S., Breuer, M., & Turner, N. J. (2015). Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science, 349(6255), 1525-1529. https://doi.org/10.1126/science.aac9283 [details] Deng, K. (2025). Unlocking palladium catalysis: S,O-ligand-promoted C-H functionalization of arenes. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Deng, K. (2025). Unlocking palladium catalysis: S,O-ligand-promoted C-H functionalization of arenes. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Mendoza Avila, J. (2025). Development of a bacterial chassis for amine synthesis. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Mendoza Avila, J. (2025). Development of a bacterial chassis for amine synthesis. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Tomarelli, E. (2025). Integrated biocatalytic approaches enabling steroids synthesis and functionalization. [Thesis, fully internal, Universiteit van Amsterdam, Università di Perugia]. [details]
Tomarelli, E. (2025). Integrated biocatalytic approaches enabling steroids synthesis and functionalization. [Thesis, fully internal, Universiteit van Amsterdam, Università di Perugia]. [details] Wei, Z. (2025). Designing multifunctional enzymatic devices for biosensing and chemical conversion. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Wei, Z. (2025). Designing multifunctional enzymatic devices for biosensing and chemical conversion. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Corrado, M. L. (2020). Multi‐enzymatic routes for the targeted synthesis of enantiopure vicinal amino alcohols. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Corrado, M. L. (2020). Multi‐enzymatic routes for the targeted synthesis of enantiopure vicinal amino alcohols. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Tseliou, V. (2020). Expanding the catalytic activity of amine dehydrogenases: Rational enzyme engineering via computational analysis and application in organic synthesis. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Tseliou, V. (2020). Expanding the catalytic activity of amine dehydrogenases: Rational enzyme engineering via computational analysis and application in organic synthesis. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Vilím, J. (2020). Bio-catalytic cascades and molecular oxygen-accessing amines and nitriles. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Vilím, J. (2020). Bio-catalytic cascades and molecular oxygen-accessing amines and nitriles. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Böhmer, W. (2019). Biocatalytic synthesis of α-chiral amines: Selective immobilization of enzymes and their application in batch and continuous flow. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Böhmer, W. (2019). Biocatalytic synthesis of α-chiral amines: Selective immobilization of enzymes and their application in batch and continuous flow. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Schmidt, M. (2019). Enzymatic tools for peptide ligation and cyclization: Development and applications. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Schmidt, M. (2019). Enzymatic tools for peptide ligation and cyclization: Development and applications. [Thesis, fully internal, Universiteit van Amsterdam]. [details]