19 March 2020
The study, carried out under the supervision of PhD student Jasper Biemolt and project leaders Dr Ning Yan and Prof. Gadi Rothenberg, is part of the UvA's efforts in the area of electrochemistry, brought together under the umbrella of the new Amsterdam Centre for Electrochemistry (Amcel).
It’s difficult to imagine our lives today without batteries as a portable source of electrical energy. Applications limited a few decades ago to flashlights and portable radios have extended to power mobile phones, personal computers, power tools and even cars, changing the world as we know it and generally improving peoples’ lives across the globe.
Much of this development is thanks to Li-ion battery technology, which has increased the energy density in batteries considerably. The scientific importance of Li-ion batteries is reflected in the awarding of the 2019 Nobel Prize in Chemistry to Stanley Whittingham, John Goodenough and Akira Yoshino. The technology also created a large market: the global lithium-ion battery market was $30 billion in 2017, and is projected to surpass $100 billion by 2025, with an annual growth rate of 17%.
Yet Li-ion batteries also have problems: Today’s batteries are close to the maximum theoretical capacity of 370 mA/g when using the lithium-carbon anode. Other lithium-based batteries that are under development to achieve higher capacities suffer from low cycle stability or experience safety problems - for instance when using pure lithium as an anode with higher energy density. In addition to safety concerns, the already high price of lithium and the depletion of the lithium reserves fuel the search for alternative battery types.
Batteries can be made from many metals, but the most promising alternatives to lithium are sodium, magnesium, zinc and aluminium (see figure). As part of their literature project, master students Peter Jungbacker and Tess van Teijlingen studied the pros and cons of these four alternatives. They categorized the individual metals by the cathode material type, focusing on the energy storage mechanism.
After analyzing each option separately, the team compared them all via a political, economic, socio-cultural and technological (PEST) analysis, covering the parameters of availability, cost, safety, weight, toxicity, performance, and stability (see figure). The review, which is one of the first to analyse both the chemical and socio-economic aspects of batteries, concludes with recommendations for future applications in the mobile and stationary power sectors.
J. Biemolt, P. Jungbacker, T. van Teijlingen, N. Yan and G. Rothenberg: Beyond lithium-based batteries. Materials, 2020, 13, 425. DOI: 10.3390/ma13020425 (open access)