For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Supikova, K., Kosinova, A., Vavrusa, M., Koplikova, L., François, A., Pospisil, J., Zatloukal, M., Wever, R., Hartog, A., & Gruz, J. (2022). Sulfated phenolic acids in plants. Planta, 255(6), [124]. https://doi.org/10.1007/s00425-022-03902-6[details]
2021
Wever, R., Renirie, R., & Hollmann, F. (2021). Vanadium Chloroperoxidases as Versatile Biocatalysts. In M. Sutradhar, J. A. L. da Silva, & A. J. L. Pombeiro (Eds.), Vanadium Catalysis (pp. 548-563). (Catalysis Series; No. 41). Royal Society of Chemistry. https://doi.org/10.1039/9781839160882-00548[details]
2020
Höfler, G. T., But, A., Younes, S. H. H., Wever, R., Paul, C. E., Arends, I. W. C. E., & Hollmann, F. (2020). Chemoenzymatic Halocyclization of 4-Pentenoic Acid at Preparative Scale. ACS Sustainable Chemistry & Engineering, 8(7), 2602-2607. https://doi.org/10.1021/acssuschemeng.9b07494[details]
Wever, R., & Hartog, A. F. (2020). Easy Sulphation of Phenols by a Bacterial Arylsulphotransferase. In J. Whitall, & P. W. Sutton (Eds.), Applied Biocatalyisis: the Chemist’s Toolbox (pp. 381-386). Wiley.
Xu, X., But, A., Wever, R., & Hollmann, F. (2020). Towards Preparative Chemoenzymatic Oxidative Decarboxylation of Glutamic Acid. ChemCatChem, 12(8), 2180-2183. https://doi.org/10.1002/cctc.201902194[details]
Wever, R., Krenn, B. E., & Renirie, R. (2018). Marine Vanadium-Dependent Haloperoxidases, Their Isolation, Characterization, and Application. In B. S. Moore (Ed.), Marine Enzymes and Specialized Metabolism (Vol. B, pp. 141-201). (Methods in Enzymology; Vol. 605). Cambridge: Academic Press. https://doi.org/10.1016/bs.mie.2018.02.026[details]
Zhang, W., Fernandez-Fueyo, E., Ni, Y., van Schie, M., Gacs, J., Renirie, R., ... Hollmann, F. (2018). Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nature Catalysis, 1(1), 55-62. https://doi.org/10.1038/s41929-017-0001-5[details]
2017
But, A., van der Wijst, E., Le Notre, J., Wever, R., Sanders, J. P. M., Bitter, J. H., & Scott, E. L. (2017). Unusual differences in the reactivity of glutamic and aspartic acid in oxidative decarboxylation reactions. Green Chemistry, 19(21), 5178-5186. https://doi.org/10.1039/c7gc02137b
Dong, J. J., Fernández-Fueyo, E., Li, J., Guo, Z., Renirie, R., Wever, R., & Hollmann, F. (2017). Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis. Chemical Communications, 53(46), 6207-6210. https://doi.org/10.1039/c7cc03368k[details]
Prinsen, P., Narani, A., Hartog, A. F., Wever, R., & Rothenberg, G. (2017). Dissolving Lignin in Water through Enzymatic Sulfation with Aryl Sulfotransferase. ChemSusChem, 10(10), 2267-2273. https://doi.org/10.1002/cssc.201700376[details]
Wever, R., & Barnett, P. (2017). Vanadium Chloroperoxidases: The Missing Link in the Formation of Chlorinated Compounds and Chloroform in the Terrestrial Environment? Chemistry - An Asian Journal, 12(16), 1997-2007. https://doi.org/10.1002/asia.201700420
Wever, R., Corr, M. J., Goss, R. J. M., & Kamer, P. (2017). Biocatalysis. In P. C. J. Kamer, D. Vogt, & J. W. Thybaut (Eds.), Contemporary Catalysis: Science, Technology and Applications (pp. 249-276). London: The Royal Society of Chemistry. [details]
Wever, R., Goss, R. J. M., Tong, X., & Hartog, A. F. (2017). An Introduction to Biocatalysis. In P. C. J. Kamer, D. Vogt, & J. W. Thybaut (Eds.), Contemporary Catalysis: Science, Technology and Applications (pp. 131-155). London: The Royal Society of Chemistry. [details]
2016
Fernández-Fueyo, E., Younes, S. H. H., van Rootselaar, S., Aben, R. W. M., Renirie, R., Wever, R., ... Hollmann, F. (2016). A Biocatalytic Aza-Achmatowicz Reaction. ACS Catalysis, 6(9), 5904-5907. https://doi.org/10.1021/acscatal.6b01636[details]
Hartog, L., & Wever, R. (2016). Sulfation made easy: A new versatile donor for enzymatic sulfation by a bacterial arylsulfotransferase. Journal of Molecular Catalysis B-Enzymatic, 129, 43-46. https://doi.org/10.1016/j.molcatb.2016.04.007
2015
Fernández-Fueyo, E., van Wingerden, M., Renirie, R., Wever, R., Ni, Y., Holtmann, D., & Hollmann, F. (2015). Chemoenzymatic halogenation of phenols by using the haloperoxidase from Curvularia inaequalis. ChemCatChem, 7(24), 4035-4038. https://doi.org/10.1002/cctc.201500862[details]
Gupta, R., Hou, G., Renirie, R., Wever, R., & Polenova, T. (2015). 51V NMR Crystallography of Vanadium Chloroperoxidase and Its Directed Evolution P395D/L241V/T343A Mutant: Protonation Environments of the Active Site. Journal of the American Chemical Society, 137(16), 5618-5628. https://doi.org/10.1021/jacs.5b02635[details]
Hartog, A. F., & Wever, R. (2015). Substrate engineering and its synthetic utility in the sulfation of primary aliphatic alcohol groups by a bacterial arylsulfotransferase. Advanced Synthesis & Catalysis, 357(12), 2629-2632. https://doi.org/10.1002/adsc.201500482[details]
Sabuzi, F., Churakova, E., Galloni, P., Wever, R., Hollmann, F., Floris, B., & Conte, V. (2015). Thymol bromination: a comparison between enzymatic and chemical catalysis. European Journal of Inorganic Chemistry, 2015(21), 3519-3525. https://doi.org/10.1002/ejic.201500086[details]
Tasnádi, G., Lukesch, M., Zechner, M., Jud, W., Hall, M., Ditrich, K., ... Faber, K. (2015). Exploiting acid phosphatases in the synthesis of phosphorylated monoalcohols and diols. European Journal of Organic Chemistry, 2016(1), 45-50. https://doi.org/10.1002/ejoc.201501306[details]
Wever, R., Babich, L., & Hartog, A. F. (2015). Transphosphorylation. In K. Faber, W. D. Fessner, & N. J. Turner (Eds.), Biocatalysis in organic synthesis. - 1 (pp. 223-253). (Science of Synthesis; No. 2014, 5). Stuttgart: Thieme Verlag. [details]
van der Horst, M. A., Hartog, A. F., El Morabet, R., Marais, A., Kircz, M., & Wever, R. (2015). Enzymatic Sulfation of Phenolic Hydroxy Groups of Various Plant Metabolites by an Arylsulfotransferase. European Journal of Organic Chemistry, 2015(3), 534-541. https://doi.org/10.1002/ejoc.201402875[details]
2013
Babich, L., Peralta, J. L. V. M., Hartog, A. F., & Wever, R. (2013). Phosphorylation by alkaline phosphatase: immobilization and synthetic potential. International Journal of Chemistry, 5(3), 87-98. https://doi.org/10.5539/ijc.v5n3p87[details]
Marhol, P., Hartog, A. F., van der Horst, M. A., Wever, R., Purchartová, K., Fuksova, K., ... Křen, V. (2013). Preparation of silybin and isosilybin sulfates by sulfotransferase from Desulfitobacterium hafniense. Journal of Molecular Catalysis B-Enzymatic, 89, 24-27. https://doi.org/10.1016/j.molcatb.2012.12.005[details]
Wever, R., & van der Horst, M. A. (2013). The role of vanadium haloperoxidases in the formation of volatile brominated compounds and their impact on the environment. Dalton Transactions, 42(33), 11778. https://doi.org/10.1039/c3dt50525a[details]
Babich, L., Hartog, A. F., van Hemert, L. J. C., Rutjes, F. P. J. T., & Wever, R. (2012). Synthesis of carbohydrates in a continuous flow reactor by immobilized phosphatase and aldolase. ChemSusChem, 5(12), 2348-2353. https://doi.org/10.1002/cssc.201200468[details]
Babich, L., Hartog, A. F., van der Horst, M. A., & Wever, R. (2012). Continuous-flow reactor-based enzymatic synthesis of phosphorylated compounds on a large scale. Chemistry - A European Journal, 18(21), 6604-6609. https://doi.org/10.1002/chem.201200101[details]
But, A., Le Notre, J., Scott, E. L., Wever, R., & Sanders, J. P. M. (2012). Selective oxidative decarboxylation of amino acids to produce industrially relevant nitriles by vanadium chloroperoxidase. ChemSusChem, 5(7), 1199-1202. https://doi.org/10.1002/cssc.201200098[details]
Natalio, F., Andre, R., Hartog, A. F., Stoll, B., Jochum, K. P., Wever, R., & Tremel, W. (2012). Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotechnology, 7, 530-535. https://doi.org/10.1038/NNANO.2012.91[details]
Persoon, I. F., Hoogenkamp, M. A., Bury, A., Wesselink, P. R., Hartog, A. F., Wever, R., & Crielaard, W. (2012). Effect of Vanadium chloroperoxidase on Enterococcus faecalis biofilms. The Journal of Endodontics, 38(1), 72-74. https://doi.org/10.1016/j.joen.2011.09.003[details]
Wever, R., & van Herk, T. (2012). Hydrolysis and formation of P-O bonds. In K. Drauz, H. Gröger, & O. May (Eds.), Enzyme catalysis in organic synthesis. - 3rd ed. (pp. 1001-1033). Weinheim: Wiley-VCH. https://doi.org/10.1002/9783527639861.ch25[details]
van der Horst, M. A., van Lieshout, J. F. T., Bury, A., Hartog, A. F., & Wever, R. (2012). Sulfation of various alcoholic groups by an arylsulfate sulfotransferase from Desulfitobacterium hafniense and synthesis of estradiol sulfate. Advanced Synthesis & Catalysis, 354(18), 3501-3508. https://doi.org/10.1002/adsc.201200564[details]
2011
André, R., Natálio, F., Humanes, M., Leppin, J., Heinze, K., Wever, R., ... Tremel, W. (2011). V2O5 nanowires with an intrinsic peroxidase-like activity. Advanced Functional Materials, 21(3), 501-509. https://doi.org/10.1002/adfm.201001302[details]
Babich, L., van Hemert, J. C., Bury, A., Hartog, A. F., Falcicchio, P., van der Oost, J., ... Rutjes, F. P. J. T. (2011). Synthesis of non-natural carbohydrates from glycerol and aldehydes in a one-pot four-enzyme cascade reaction. Green Chemistry, 13(10), 2895-2900. https://doi.org/10.1039/c1gc15429j[details]
Hartog, A. F., van Herk, T., & Wever, R. (2011). Efficient regeneration of NADPH in a 3-enzyme cascade reaction by in situ generation of glucose 6-phosphate from glucose and pyrophosphate. Advanced Synthesis & Catalysis, 353(13), 2339-2344. https://doi.org/10.1002/adsc.201100198[details]
Natalio, F., André, R., Pihan, S. A., Humanes, M., Wever, R., & Tremel, W. (2011). V(2)O(5) nanowires with an intrinsic iodination activity leading to the formation of self-assembled melanin-like biopolymers. Journal of Materials Chemistry, 21(32), 11923-11929. https://doi.org/10.1039/c1jm11811k[details]
2010
Renirie, R., Charnock, J. M., Garner, C. D., & Wever, R. (2010). Vanadium K-edge XAS studies on the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis. Journal of inorganic biochemistry, 104(6), 657-664. https://doi.org/10.1016/j.jinorgbio.2010.02.007[details]
2009
Caiazzo, A., Garcia, P. M. L., Wever, R., van Hest, J. C. M., Rowan, A. E., & Reek, J. N. H. (2009). Synergy between chemo- and bio-catalysts in multi-step transformations. Organic & Biomolecular Chemistry, 7(14), 2926-2932. https://doi.org/10.1039/b901592b[details]
Hoogenkamp, M. A., Crielaard, W., ten Cate, J. M., Wever, R., Hartog, A. F., & Renirie, R. (2009). Antimicrobial activity of vanadium chloroperoxidase on planktonic Streptococcus mutans cells and Streptococcus mutans biofilms. Caries Research, 43(5), 334-338. https://doi.org/10.1159/000231569[details]
Renirie, R., Pierlot, C., Wever, R., & Aubry, J-M. (2009). Singlet oxygenation in microemulsion catalysed by vanadium chloroperoxidase. Journal of Molecular Catalysis B-Enzymatic, 56(4), 259-264. https://doi.org/10.1016/j.molcatb.2008.05.014[details]
van Herk, T., Hartog, A. F., Babich, L., Schoemaker, H. E., & Wever, R. (2009). Improvement of an acid phosphatase/DHAP-dependent aldolase cascade reaction by using directed evolution. ChemBioChem, 10(13), 2230-2235. https://doi.org/10.1002/cbic.200900102[details]
2008
Renirie, R., Dewilde, A., Pierlot, C., Wever, R., Hober, D., & Aubry, J-M. (2008). Bactericidal and virucidal activity of the alkalophilic P395D/L241V/T343A mutant of vanadium chloroperoxidase. Journal of Applied Microbiology, 105(1), 264-270. https://doi.org/10.1111/j.1365-2672.2008.03742.x[details]
de Macedo-Ribeiro, S., Renirie, R., Wever, R., & Messerschmidt, A. (2008). Crystal structure of a trapped phosphate intermediate in vanadium apochloroperoxidase catalyzing a dephosphorylation reaction. Biochemistry, 47(3), 929-934. https://doi.org/10.1021/bi7018628[details]
2012
Auriol, D., ter Halle, R., Lefèvre, F., Visser, D. F., Gordon, G. E. R., Bode, M. L., ... Gruber-Khadjawi, M. (2012). Transferases for alkylation, glycosylation and phosphorylation. In J. Whittall, & P. W. Sutton (Eds.), Practical methods for biocatalysis and biotransformations (Vol. 2, pp. 231-262). Chichester: Wiley. https://doi.org/10.1002/9781119943426.ch9[details]
Kim, B. G., Ahn, J. H., Sello, G., Di Gennaro, P., van Herk, T., Hartog, A. F., ... Eddowes, P. (2012). Tandem and sequential multi-enzymatic syntheses. In J. Whittall, & P. W. Sutton (Eds.), Practical methods for biocatalysis and biotransformations (Vol. 2, pp. 313-346). Chichester: Wiley. https://doi.org/10.1002/9781119943426.ch12[details]
Wever, R. (2012). Structure and function of vanadium haloperoxidases. In H. Michibata (Ed.), Vanadium: biochemical and molecular biological approaches (pp. 95-125). Springer. https://doi.org/10.1007/978-94-007-0913-3_5[details]
2010
Wever, R. (2010). Application of peroxidases. In H. B. Dunford (Ed.), Peroxidases and catalases: biochemistry, biophysics, biotechnology, and physiology (2. ed.) (pp. 403-424). Hoboken, NJ: Wiley. [details]
Wever, R., & Renirie, R. (2010). Structure and function of vanadium haloperoxidases. In H. B. Dunford (Ed.), Peroxidases and catalases: biochemistry, biophysics, biotechnology, and physiology (pp. 363-386). Wiley: Hoboken, NJ. [details]
Prize / grant
Wever, R. (2016). Vanadis award.
Talk / presentation
Wever, R. (speaker) (6-11-2016). Vanadium haloperoxidases, from their discovery to their involvement in ozone breakdown in the atmosphere, International Vanadium Symposium: Chemistry, Biological Chemistry, and Toxicology, Taipei.
Others
Wever, R. (participant) (6-10-2022). Enzymology -Past, Present and Future, Utrecht. Co-organizer Enzymology Symposium, “Enzymology -Past, Present and Future, Utrecht, October 6, 2022 (organising a conference, workshop, ...).
Wever, R. (visiting researcher) (18-1-2019). University of Copenhagen, Faculty of Science (visiting an external institution).
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.