For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

The Hydrogen Economy

Slootweg group

Hydrogen gas is a crucial energy carrier in the renewable energy transition, as it has a high energy capacity of 122 MJ/kg. Nonetheless, it has a low density and thus a low volumetric energy capacity; at room temperature, 1 kg of H2 occupies a volume of 11 m3. Consequently, the storage of H2 is a key aspect of its large-scale application as a zero-emission energy carrier.

Interestingly, NaBH4 can act as a solid storage medium, releasing four equivalents of H2 upon its hydrolysis with >99% efficiency. A longtime challenge of the use of NaBH4 though is the formation of sodium metaborate, NaBO2, as so-called ‘spent fuel’. Yet if NaBO2 can be reused in the process, NaBH4 becomes a circular hydrogen storage material. Recently, we have developed a circular, waste-free method to regenerate NaBH4 through the electrochemical recycling of the NaBO2 spent fuel. This discovery lays the groundwork for the large-scale application of sodium borohydride as a sustainable hydrogen storage medium, and thus opens up exciting opportunities for importing hydrogen on a large, commercial scale.